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Abstract. We discuss, at the mean-field level, the asymptotic shape of the reaction fronts in the general
nA + mB → C reaction-diffusion processes with initially separated reactants, thereby generalizing to
arbitrary reaction-order kinetics the work done by Gálfi and Rácz for the case n = m = 1. The obtained
information allows us to calculate the asymptotic density of C particles deposited by the moving reaction
front, a quantity that plays an important role in the theories of Liesegang patterns formation.

PACS. 82.20.Mj Nonequilibrium kinetics – 82.20.Db Statistical theories (including transition state) –
66.30.Ny Chemical interdiffusion; diffusion barriers

1 Introduction

Consider two reactants, initially separated, which are put
in contact at time t = 0 and start to mix one into each
other by diffusion. A reaction zone (i.e. a region where the
reaction rate is high) will develop at their interface. The
mathematical function describing the variation, in space
and time, of the amplitude of the reaction rate is usually
called a reaction front R(x, t).

Dynamical properties of reaction fronts in (purely
or effectively) one-dimensional reaction-diffusion systems
have been the object of numerous studies [1–12]. In gen-
eral, it is observed that these fronts obey asymptotic scal-
ing, characterized by a scaling function G and scaling
exponents α, γ:

R ∼ t−γΦ
(
x− xf(t)

tα

)
. (1)

In the previous expression, xf(t) locates the position of the
front (usually defined as its first moment), which generally
obeys

xf(t) ∝
√
t, (2)

accounting for the diffusive origin of the front’s dynamics.
In the framework of a mean-field approximation (which

is ours from now on), scaling hypothesis, together with
balance considerations, can lead quite directly to the val-
ues of the dynamical scaling exponents (see [1,2]). Access-
ing the structure (i.e. the shape) of the scaling function
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itself requires however to go one level deeper into the anal-
ysis of the process in consideration.

In addition to satisfying a purely theoretical curiosity,
knowing better Φ itself can provide a practical advantage.
For example, in studying phenomena involving reaction-
diffusion processes, like Liesegang patterns formation, it
may be useful to dispose of an explicit, approximated an-
alytical form for Φ. This allows, for example, to bypass
the dynamical generation of this front in a numerical sim-
ulation and save computation time [14]. Finding such an
analytical approximation requires evidently to gain suffi-
cient information about the scaling function.

Both tasks (derivation of the scaling exponents and of
the scaling function) were accomplished in the pioneer-
ing paper by Gálfi and Rácz [1], where they studied the
reaction front in the A + B

k→ C process with initially
segregated A-s and B-s in mean-field approximation.

In the present paper, we provide a generalization of
their work to the case of arbitrary reaction-order kinetics,
nA+mB k→ C, and explain how to calculate the associated
C density profile in the asymptotic regime.

An important motivation for this generalization is the
following: in the case of Liesegang patterns, the primary
chemical reaction leading (through several complex coars-
ening processes) to the formation of precipitate turns out
to be most often of the types A+ 2B or 2A+B, and not
A + B, as usually considered for simplicity in theoretical
models [13–15].
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2 Scaling analysis

2.1 Definition and notations

The case of mean-field, general reaction-order kinetics in
the initially segregated reactants case has already been ad-
dressed in [2]. Using scaling analysis, the authors showed
that the exponents controlling the asymptotic behaviour
of the reaction front are given, in terms of the reaction-
order constants, by:

α(n,m) =
n+m− 1

2(n+m+ 1)
, γ(n,m) =

1
n+m+ 1

(3)

where α, γ are the same as in (1), and (n,m) are integers
both ≥ 1.

It is important to note the following properties of these
exponents:

1. α(n,m) = α(n+m), γ(n,m) = γ(n+m).
2. α(n,m) < 1/2 ∀ (n,m), α increases monotonically

from 1/6 (n = m = 1) to 1/2 (n+m→∞).
3. α(n,m) + γ(n,m) = 1/2.

We can start from the above results to formulate a gen-
eral derivation that will lead us to the family of ordinary
differential equations defining the asymptotic shape of the
reaction fronts R(n,m)

1. To this goal, let us consider the
following one dimensional initial-value problem, describ-
ing a reaction-diffusion process between initially separated
A and B particles in the mean-field approximation:

∂TA(X,T ) = DA∂
2
XA(X,T )− kn(AnBm)(X,T ) (4a)

∂TB(X,T ) = DB∂
2
XB(X,T )− km(AnBm)(X,T ) (4b)

∂TC(X,T ) = k(AnBm)(X,T ), (4c)

with

A(X,T = 0) = a0θ(−X), (5a)
B(X,T = 0) = b0θ(X), (5b)
C(X,T = 0) ≡ 0. (5c)

In the above equations,

– θ denotes the Heaviside step function [ θ(X < 0) =
0, θ(X ≥ 0) = 1 ].

– A, B and C are concentrations with dimensions
[A,B,C] = [X−1].

– DA and DB are diffusion coefficients ([DA, DB] =
[X2T−1]).

– k is the reaction rate ([k] = [Xn+m−1T−1]).

In the following, we will only consider the case of equal
diffusion coefficients, DA = DB ≡ D, since the method
we are going to use requires this strong condition to be
satisfied. The asymmetric case DA 6= DB reveals to be
several orders of magnitude higher in difficulty. Interest-
ing results have been obtained in the case n = m = 1, in

1 This derivation follows closely the steps and notation in [1],
and the reader should refer to it for further details and justifi-
cations.

connection to the front’s dynamics [7,8], but a derivation
of the shape of the scaling functions for arbitrary DA/DB

seems to be still out of reach for the moment.

The first step in our calculation is to render the prob-
lem adimensional. This can be done through the following
change of variables:

x ≡

√
kan+m−1

0

D
X, (6a)

t ≡ kan+m−1
0 T, (6b)

a, b, c ≡ A/a0, B/b0, C/c0. (6c)

The equations then read:

∂ta(x, t) = ∂2
xa(x, t)− nan(x, t)bm(x, t), (7a)

∂tb(x, t) = ∂2
xb(x, t)−man(x, t)bm(x, t), (7b)

∂tc(x, t) = an(x, t)bm(x, t), (7c)

with

a(x, t = 0) = θ(−x), (8a)

b(x, t = 0) =
b0
a0
θ(x), (8b)

c(x, t = 0) ≡ 0. (8c)

2.2 Solution for a− (n/m)b

We define:

u(x, t) ≡
(
a− n

m
b
)

(x, t). (9)

This function obeys the diffusion equation:

∂tu(x, t) = ∂2
xu(x, t), (10a)

u(x < 0, t = 0) = 1, (10b)

u(x > 0, t = 0) = − n
m

b0
a0
≡ − n

m
q, (10c)

whose solution reads

u(x, t) =
1
2

(
(1− n

m
q)− (1 +

n

m
q)erf

(
x

2
√
t

))
. (11)

In the above equation, erf denotes the error function,
erf(x) ≡ (2/

√
π)
∫ x

0 exp(−w2)dw.
Let xf(t) be such that u(xf(t), t) = 0. One can check

that

xf(t) =
√

2Dft, (12)

with Df = Df(q) given by:

erf

(√
Df

2

)
=

1− n
mq

1 + n
mq
· (13)
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2.3 Equation for a in the reaction zone

We write now b = m
n (a−u) and plug it into (7a), thereby

getting an equation for a involving only a and the known
function u:

∂ta(x, t) = ∂2
xa(x, t)− n

(m
n

)m [
an(a− u)m

]
(x, t). (14)

We are interested in the solution of this equation in the
reactive region |x−xf | ≈ tα(n,m). As the latter is believed
to widen with a time exponent α(n,m) < 1/2 , this allows
us to expand u around xf to the lowest-order in x/

√
t,

since the neglected terms will vanish as t→∞:

u(x, t) ≈ −Kx− xf√
t

|x− xf | ≈ tα(n,m), (15)

with K given by:

K =
1 + n

mq

2
√
π

exp(−Df/2). (16)

The boundary conditions that the solution to (14) must
satisfy in the reactive region are:

a(x→ −∞, t) = −Kx− xf√
t
, (17a)

a(x→ +∞, t) = 0. (17b)

2.4 Scaling hypothesis

We shall now assume that asymptotically (i.e. when t →
∞), the solution to (14) adopts the following scaling form:

a(x, t) ≈ t−γ(n,m)G(n,m)

(
x− xf(t)
tα(n,m)

)
, (18)

where {G(n,m)}n,m≥1 are a family of scaling functions re-
maining to be characterized. The scaling exponents are
given by (3).

2.5 Differential equation for G(n,m)

Let’s define first the reaction zone coordinate z:

z ≡ x− xf

tα(n,m)
· (19)

Inside the reaction zone, u and b = m
n (a− u) write

u(z) = −Ktα(n,m)−1/2z, (20)

b(z) =
m

n
(t−γ(n,m)[G(n,m)(z) +Kz]). (21)

Using (18), equation (14) becomes:

t2α(n,m)−1[−γ(n,m)G(n,m) − α(n,m)z∂zG(n,m)]

−
√
Df

2
tα(n,m)−1/2∂zG(n,m)

= ∂2
zG(n,m) − n

(m
n

)m
Gn(n,m)[G(n,m) +Kz]m. (22)

We now take the asymptotic limit inside the reaction zone,
i.e. we let t→∞, keeping z fixed. The two terms on the
left-hand side vanish (remember that α(n,m) < 1/2 !) and
we remain with the following ordinary, non-linear second-
order differential equation for the scaling functions G(n,m):

G′′(n,m)(z) = n
(m
n

)m
Gn(n,m)(z)[G(n,m)(z) +Kz]m. (23)

The boundary conditions (17a, 17b) imply the follow-
ing asymptotics for G(n,m) [1]:

G(n,m)(z)→ −Kz, z → −∞, (24a)
G(n,m)(z)→ 0, z →∞. (24b)

We are now left with a boundary value problem (23, 24)
that can be solved numerically.

2.6 Solving the equation for G(n,m)

We can make the problem K-independent by rescaling G
and z:

G ≡ Kµ(n,m)G̃, (25a)

z ≡ Kν(n,m)z̃, (25b)

and by using a suitable choice for µ and ν. Inserting these
scaled forms into (23) and imposing that K drops out
leads to:

µ(n,m) =
2

n+m+ 1
= µ(n+m), (26a)

ν(n,m) =
−(n+m− 1)
n+m+ 1

= ν(n+m). (26b)

The problem we are left to treat is now:

G̃′′n,m(z̃) = n
(m
n

)m
G̃nn,m(z̃)

[
G̃n,m(z̃) + z̃

]m
, (27a)

G̃n,m(z̃)→ −z̃ z̃ →∞, (27b)

G̃n,m(z̃)→ 0 z̃ →∞. (27c)

The reader should keep in mind, from now on, that the
“tilde” sign stands for quantities expressed in terms of
the rescaled K-independent version of the scaling function
G(n,m) and reactive coordinate z.

2.7 The dimensionless reaction front

By definition:

R(n,m)(x, t) = an(x, t)bm(x, t)

=
(m
n

)m
t−

n+m
n+m+1Gn(n,m)[G(n,m) +Kz]m

≡ t−β(n,m)F(n,m)(z), (28)

the last equality defining both the reaction rate amplitude
exponent β and the asymptotic reaction front scaling func-
tion F(n,m).
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Fig. 1. Numerical solutions to (27) for (1 ≤ n,m ≤ 2).

Figure 1 shows the result of the numerical computation
of the fronts F̃(n,m) ≡ F (G̃, z̃) for the cases 2 ≤ n+m ≤ 4
(only such low values of n + m are relevant in con-
nection to experiments). The reader should not be sur-
prised by the asymmetry between the (n,m) = (1, 2) and
(n,m) = (2, 1) cases, as it is due to the passage from
the variables {G(n,m), z} to {G̃(n,m), z̃}. Both quantities
are namely rescaled by a K-dependent factor which is not
(n,m)-symmetric !

For n = m, the front is naturally a symmetric function
of z. The particular case (n,m) = (1, 1) exhibits a front
that is essentially localized: the dominant contribution to
both tails at z → ±∞ has been shown to be proportional
to z3/4 exp(−z3/2) [9]. For the higher-order cases n+m >
2, one can make use of (23) to obtain a rough idea of the
dominant contribution to the tails’ decay. Approximating
Kz + G(z) by Kz for z → ±∞, we can distinguish two
qualitatively different cases: when n = 1,m > 1, the decay
is dominated by exp(−z1+m/2) at z → ∞, but remain
algebraic for z → −∞: R(z → −∞) ≈ z−(2m+1)/(m−1).
When n > 1,m > 1, both tails are algebraic, with R(z →
∞) ≈ z−(2m+n)/(n−1). It is also worth noting that in the
asymmetric cases n 6= m, xf does not coincide with the
maximum of the front.

As seen, a breaking of the fronts’ symmetry can be in-
duced by the asymmetry in the reaction-order coefficients
n and m, but not by the asymmetry of either the initial
reactant concentrations, or the diffusion coefficients [7].
Interestingly however, the singular case where one reac-
tant is completely immobile (Db = 0) falls into the class
of the asymmetric and fast-decreasing fronts [8].

3 The C concentration profile

3.1 Derivation of the asymptotic profile

We are interested now in estimating the (possibly x -depen-
dent) density c

(n,m)
0 (x) of C particles left behind by the

fronts R(n,m) which travel diffusively through the system.
This quantity is, for example, of great importance in the
theories of Liesegang pattern formation [13,14].

In dimensionless units, c(n,m)
0 is formally given by

c
(n,m)
0 (x) ≡

∞∫
0

R(n,m)(x, t) dt. (29)

Due to the several timescales dependence of R(n,m), this
integral is difficult to handle. The estimation of c(n,m)

0 (x)
turns out however to be possible by making use of:

a) the precious algebraic relation α + γ = 1/2 between
the scaling exponents, and

b) the particular structure of the solutions to (27).

Let’s consider first a narrow slice δF(n,m)(z0, δw) of
the scaling function F(n,m), centered on z = z0, of width
δw � 1. In the spirit of the Riemann integral, we can
approximate the amplitude of δF inside [z0 − δw/2, z0 +
δw/2] by its value F(n,m)(z0) at the center.

We can estimate the contribution δC(n,m)(z0, x)/δx of
this slice to the asymptotic localC density inside [x, x+δx]
as follows: the fraction of the front we are considering
will reach x at a certain time t(z0, x). The quantity of
C particles deposited in the interval [x, x + δx] will be
proportional to the amplitude, the width and inversely
proportional to the speed of the slice at t = t(z0, x):

δC(n,m)(z0, x)

≈
t(z0, x)−γ(n,m)F(n,m)(z0)t(z0, x)α(n,m)δw√

Df/(2t(z0, x))
δx

=
√

2/DfF(n,m)(z0)δw δx. (30)

In other words, the contribution of the slice to the density
at x is proportional to its “mass” F(n,m)(z0)δw but inde-
pendent of t(z0, x), and hence of x. This indicates that
the asymptotic density profile is flat. By superposition,
our argument leads immediately to the result we are look-
ing for:

c
(n,m)
0 (x) ≡ c

(n,m)
0 = const.

≈
√

2/Df

∫ ∞
−∞

F(n,m)(z) dz. (31)

Now our real fortune is that we are able to evaluate ana-
lytically

∫
F(n,m). Using (23) and (28), we have∫ ∞

−∞
F(n,m)(z) dz =

1
n

[
∂zG(n,m)(z →∞)

− ∂zG(n,m)(z → −∞)
]
. (32)

It is intuitively clear, from purely physical considerations,
that the solution will converge to its values at±∞ in such
a way that:

lim
z→−∞

G′(n,m)(z) = −K , lim
z→+∞

G′(n,m)(z) = 0 (33)
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Fig. 2. Numerical solutions to (4) for (2 ≤ n + m ≤ 3)
(plain curves). The dashed lines indicate the asymptotic val-
ues as calculated from (13, 16, 36). The following values of
the “free” parameters were chosen for all three cases: D = 1,
a0 = 10−2b0 = 1, k = 0.1. Units for X and k vary with (n,m)

according to (6a), while c
(n,m)
0 is measured in units of 1/a0.

(see (27b, 27c)). So we finally have:∫ ∞
−∞

F(n,m)(z) dz =
K

n
, (34)

and we end up with the result:

c
(n,m)
0 ≈ K

n

√
2/Df . (35)

Going back to the dimensional variables A,B,C,X and
T , one can check that (35) writes:

c
(n,m)
0 ≈

√
2D
Df

Ka0

n
· (36)

Figure 2 shows the c(n,m)
0 profiles obtained by numerical

integration of the reaction-diffusion equations (4), to-
gether with the asymptotic values predicted by (36).

3.2 Low q expansion

In the context of Liesegang patterns-forming experiments,
which are generally based on the penetration of a highly
concentrated solution into a dissolved one, it is useful to
dispose of an expansion of this result for low q ≡ b0/a0

values. We recall that Df is given by:

Erf

(√
Df

2D

)
=

1− n
mq

1 + n
mq

= 1− 2
n

m
q
q�1,n≤2∼= 1. (37)

The large x asymptotics of Erf(x) is given by [16]:

Erf(x) ∼ 1− e−x
2

√
πx

[
1− 1

2x2
+ · · ·

]
, (38)

so we obtain from (37):√
D

Df
exp(−Df/2D) ∼=

[
1− 1

2
D

Df

]−1

×
√

2π
n
mq

1 + n
mq

, (39)

which, together with the dimensional expression for K,

K =
1 + n

mq

2
√
π

exp(−Df/2D), (40)

gives finally:

c
(n,m)
0

∼=
b0
m

[
1 +

1
2
D

Df
+O

((
D

Df

)2
)]

.

The physical meaning of this result is clear: if DA = DB =
D and q � 1, then Df � D and the B particles appear
as nearly immobile for the invading A-s. As m B-s are
required to produce one C, the density equals b0/m to a
very good approximation.

However, in the typical conditions of a Liesegang ex-
periment (where DA

∼= DB and 10−2 ≤ q ≤ 5 × 10−2

typically), the first order correction in D/Df to c(n,m)
0 lies

in the range (0.1 − 0.2)(b0/m), and should therefore, in
principle, not be neglected as can be seen of Figure 2.

4 Summary

We have derived the family of ordinary differential equa-
tions defining the asymptotic shape of the reaction fronts
in the nA +mB

k→ C reaction-diffusion process with ini-
tially separated reactants (Eqs. (23, 24)). The four lowest-
order cases in n+m have been solved numerically (Fig. 1).
We have also shown, and confirmed by numerical simula-
tions, that the density c

(n,m)
0 of C particles deposited in

the system by these traveling fronts is asymptotically con-
stant (Fig. 2), and we have made explicit the dependence
of this density on the reaction orders n,m, as well as on
the material parameters D, a0, k and b0 entering the prob-
lem (Eq. (36)).

5 Conclusion

To conclude this study, we would like to comment on the
interesting phenomenon shown by Figure 2. When, for the
two m = 1 cases, no significant quantity of reaction prod-
uct is created in the majority species subspace, the case
where m = 2 exhibits, on contrary, an important deposit
of C on the left hand side, up to far beyond the initial lo-
cation of the interface. This fact must be evidently related
to the details of the short-time dynamics of the reaction
front. Some studies have already been carried on the early-
time regime subject for the n = m = 1 case [17,18] in the
past. They unveiled the existence of a surprisingly complex
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behaviour, including successive power-law regimes for the
early front’s dynamics, and even the possibility of a change
in its direction of motion. Such nontrivial behaviour has
also been observed numerically in the higher-order kinet-
ics cases we have addressed in the present paper, and a
detailed study of the dependence on (n,m) of the short-
time dynamics should be worth being investigated.

I am grateful to Michel Droz for his comments on the
manuscript.
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